
Arduino
in a Nutshell
Jan Borchers

Version 1.8 (Aug 5, 2013)

for Arduino Uno R3 & Arduino IDE 1.0.5

Latest version at: hci.rwth-aachen.de/arduino

http://hci.rwth-aachen.de/borchers
http://hci.rwth-aachen.de/borchers

ACKNOWLEDGEMENTS

Thanks to Jeff and Drake for playing with the

Arduino last night, and almost completing our

plans for world domination through an army of

robots doing our bidding (insert finger wiggling

and evil laugh here). I wrote this booklet in

about four hours after getting home last night,

and illustrated it this morning. It closely follows

our adventures into Arduinoland.

The Arduino team continues to do an awesome job

providing this easy-to-use electronics platform, and all

schematics were created using the excellent software

from Fritzing.org. Jim Hollan at UCSD is a great host,

and my students back in Germany are bravely suffering

through (enjoying?) the time with me away on sabbatical.

This booklet is dedicated to Ina who is always

wonderfully supportive of her geek.

San Diego, Aug 9, 2012

For great feedback, thanks to the arduino-teachers,

Sketching In Hardware and i10 mailing lists, especially

CTP, David Mellis (Arduino), Gerald Ardito, Jonathan

Oxer (shieldlist), Linz Craig (SparkFun), Michael Shiloh,

Nick Ward, Patricia Shanahan, and Thorsten Karrer!

2
 Arduino in a Nutshell

I. INTRODUCTION

The Arduino is a family of

microcontroller boards to simplify

electronic design, prototyping

and experimenting for artists,

hackers, hobbyists, but also many

professionals. Use it as brains for your robot, to build a

new digital music instrument, or to make your house plant

tweet you when it’s dry. Know a little programming, but

no electronics? This book will get you started quickly.

Arduinos (we use the standard Arduino Uno R3) contain

an ATmega microcontroller — that’s a complete computer

with CPU, RAM, Flash memory, and input/output pins,

all on a single chip. Unlike, say, a Raspberry Pi, it’s

designed to attach all kinds of sensors, LEDs, small

motors and speakers, servos, etc. directly to these pins,

which can read in or output digital or analog voltages

between 0 and 5 volts. The Arduino connects to your

computer via USB, where you program it in a simple

language (C/C++, similar to Java) inside the free

Arduino IDE by uploading your compiled code to the board.

Once programmed, the Arduino can run with the USB

link back to your computer, or stand-alone without it —

no keyboard or screen needed, just power.

Arduino in a Nutshell
 3

II.!GETTING STARTED:
! ! BLINK AN LED!

1.Get the MAKE Ultimate Micro-

controller Pack with an Arduino Uno

R3 from makershed.com or your local RadioShack

($149). Also get a standard USB A-B cable and a 9V

battery. Or, for just the parts we’ll use here, get the

Wish List at sparkfun.com/wish_lists/46366 ($63).

SparkFun’s Inventor’s Kit or Adafruit’s Experimenta-

tion Kit also have most parts we need, and more.

2. Download and install the Arduino IDE for Mac, Linux

or Windows from arduino.cc. Windows users also

need to install a driver .INF file, see the website.

3. Connect your board via USB. Launch the Arduino

app. From the Tools:Board menu, select Arduino Uno.

From the Tools: Serial Port menu, select the new serial

port (/dev/tty.usbmodem... on Macs). Open the

sketch (program) File:Examples:01.Basics:Blink. Click

the ➲ toolbar button to upload it to your board.

After some flickering, its tiny yellow LED should blink

regularly (1 second on, 1 second off). You’ve

programmed your first microcontroller! Change the

durations in delay() and upload to see the effect.

4
 Arduino in a Nutshell

http://www.makershed.com/Ultimate_Microcontroller_Pack_p/msump.htm
http://www.makershed.com/Ultimate_Microcontroller_Pack_p/msump.htm
https://www.sparkfun.com/wish_lists/46366
https://www.sparkfun.com/wish_lists/46366
http://arduino.cc
http://arduino.cc

III. RUN WITHOUT A COMPUTER

1. Disconnect the USB cable from your board.

2. Put the 9V battery into the battery case (takes some

fiddling).

3. Plug the barrel plug from the battery case into the

round socket on the Arduino, and turn on the switch

on the battery case if it has one.

4. Your sketch starts running as soon as the board is

powered up, and the LED blinks, until you turn off

power — no computer needed! That’s a great way to

build small, autonomous systems around an Arduino.

The Arduino converts the 9V from the battery down to 5V

using a regulator on the board. You can also connect

anything from 7–12 volts DC to the barrel plug socket

(2.1 mm / 5.5 mm diameter, center positive), or stick

cables directly into the Vin and GND (Ground) pins to

power the board from 7–12 volts — great if you don’t

have a barrel plug on your power source.

Don’t attach a 5V power source directly to the +5V pin

though — it’s a voltage output pin only, and you may fry

your onboard regulator. Use the USB connector instead.

Arduino in a Nutshell
 5

IV. CONNECT A BIG LED

1.Always disconnect or turn

off your power source before

you change your circuit to

avoid shorts. They may shut

down your USB port, or

worse.

2. Bend and stick the longer lead (+) of any red, yellow

or green LED into Digital Pin 13 on the Arduino. Stick

its shorter lead (—) into the GND pin next to pin 13,

as shown.

3. Connect USB — now your big LED blinks too.

The “Blink” sketch outputs a high signal (5V) on pin 13

using digitalWrite(led,HIGH); waits for 1000 ms (1 s)

using delay(1000); then outputs a low signal (0V) and

waits another second. This makes your LED blink. The

yellow onboard LED is also connected to pin 13, so it

blinks along.

Every Arduino sketch has one setup() method that runs

once whenever the Arduino powers up or resets, and a

loop() function that is repeated after that until the board

is powered off or reset again. No OS, no multiple apps!

6
 Arduino in a Nutshell

Made with Fritzing.org

V. ADD A RESISTOR

Connecting an LED directly to 5V and GND will usually

fry it because of too much current flowing through it. It

survived only because the Arduino can’t provide more

than 40 mA (milliamps) of current on each pin.

That’s still more than the 20 mA standard LEDs like and

need, however. LEDs also drop (consume) around 2V of

“forward” voltage (Vf). For precise values, google, e.g.,

“SparkFun red 5mm LED” (SparkFun sells great basic

components and documents them well). To limit the

current, add a resistor before or after the LED.

What’s the right resistor value? The Arduino pins provide

5V. 2V are dropped by the LED. That leaves 3V to drop

over the resistor, at a current of 20 mA. Ohm’s law (I use

the picture on the right to remember it) says

U (voltage) = R (resistance) x I (current), or

R = U / I = 3 V / 20 mA = 3 V / 0.02 A = 150 Ω.

Choose the next bigger resistor you have; in our case it’s

330 Ω (Orange–Orange–Brown–Gold). Use the color

code table in the Make Pack booklet, google “resistor

color codes”, or get Adafruit’s simple Circuit Playground

app or the comprehensive Electronic Toolbox Pro app for

your iPhone/iPad.

Arduino in a Nutshell
 7

 U
 R I

http://www.sparkfun.com
http://www.sparkfun.com
http://adafruit.com/circuitplayground
http://adafruit.com/circuitplayground
http://itunes.apple.com/us/app/electronic-toolbox-pro/id339158729?mt=8
http://itunes.apple.com/us/app/electronic-toolbox-pro/id339158729?mt=8

Disconnect USB. In the mini

solderless breadboard, each

vertical column of 5 holes is

connected inside the board.

Stick the LED, 330 Ω resistor

and jumper wires in as shown.

Current will now flow from

Arduino pin 13 through the

resistor and the LED to GND

when pin 13 is HIGH.

Connect USB. Your LED will glow slightly less bright than

before, but will last forever. The current is now around 3

V / 330 Ω = 9 mA. Current is the same everywhere in a

simple closed circuit without branches. So it doesn’t

matter if you put the resistor before or after the LED.

8
 Arduino in a Nutshell

Made with Fritzing.org

Tip: Always use red wires for connections to 5V, black

wires for connections to GND, and other colors using a

schema you like. I use yellow wires for outputs to LEDs,

green wires for outputs to motors and servos, and blue

wires for sensor inputs. It’ll help avoid confusion, short-

circuits, and fried components. Trust me; I’ve been there.

VI.!DIGITAL INPUT:
! ! ! READ A BUTTON

Disconnect USB. Add a

pushbutton, 10 kΩ resistor

(Brown—Black—Orange—

Gold) and wires as shown.

Orient the button so the pins

that are closer are next to

each other. These connect

when you push it; the pins

below each other are

always connected.

Change the Blink code so it only blinks the LED while pin

2 is LOW: Define a global integer (int) variable

pushbutton. Set it to 2 in your setup(). In your loop()

code, use if (digitalRead(button)==LOW) {...}. Don’t

forget the curly braces and the double equal sign. Now,

the LED will only blink while you press the pushbutton!

We are using pin 2 as a digital input to detect if its

voltage is closer to GND or 5V. Every digital pin 0..13

can be an input or output pin. While input is the default,

it’s good style to add pinMode(pushbutton,INPUT); to

your setup() function to make it more readable.

Remember to end each statement with a semicolon.

Arduino in a Nutshell
 9

Made with Fritzing.org

The 10 kΩ resistor is a pullup resistor. It provides a

defined voltage (5V) to pin 2 when the button switch is

open (it “pulls it up to 5V”). Otherwise pin 2 would be

connected to nothing, or “floating”, and pick up random

electromagnetic noise like an antenna, leading to

unpredictable HIGH/LOW values when you read it.

When you push the button, it pulls pin 2 low (connects it

to GND = 0V), and a small current flows through the

resistor and switch to GND. All 5V then “drop” across

the resistor. Arduino inputs themselves just “measure” the

voltage on their pins while consuming hardly any current.

VII. INTERNAL PULLUP RESISTORS

Remove the 10 kΩ pullup resistor from the board. Now

your LED may be blinking or not, since pin 2 is floating.

Change setup() to say pinMode(button, INPUT_PULLUP);

and upload. This connects an internal pullup resistor to

that pin inside the ATmega chip. It works like your

external pullup resistor, but you can simplify your circuit.

10
 Arduino in a Nutshell

Tip: For help with any function, click on it, then select the

Help:Find In Reference menu. I also use the language

reference at arduino.cc/en/Reference a lot; more

tutorials are at arduino.cc/en/Tutorial/Foundations.

http://arduino.cc/en/Reference
http://arduino.cc/en/Reference
http://arduino.cc/en/Tutorial/Foundations
http://arduino.cc/en/Tutorial/Foundations

